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greater  computa t iona l  time, in applying this method  
to larger structures than illustrated here. 
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Abstract 

The generat ion of  possible twin laws for (pseudo-)-  
merohedry  by left coset decomposi t ion of  the point  
symmetry of  the crystal lattice (metric symmetry)  with 
respect to the crystal point group is presented. Two 
algori thms for the generat ion of  the system of  rep- 
resentatives have been devised. The first produces  
twin laws in the form of  pure rotations of  180 ° 
wherever  possible, and the second associates 
operat ions in pairs related by a centre of  symmetry  
for crystals lacking an inversion centre. The metric 
symmetry  should be determined by means  of  cell 
reduction f rom the measured  cell dimensions and the 
crystal point  group derived from the assumed space 
group. The automat ic  generat ion of  twinning 
operat ions by this algori thm greatly facilitates the 

testing of  twinning and orientat ion ambiguit ies by 
way of  least-squares refinement of  the twin fractions. 

Introduction 

Twinning by (pseudo-)merohedry results in the exact 
superposi t ion of  the reciprocal lattices of  the twin 
components  and hence leads to the modificat ion of  
the intensities of  Bragg reflections. The automat ic  
t reatment  of  (pseudo- )merohedry  should hence be an 
essential component  of  any modern  computer  system 
under taking structure solution and refinement. Even 
for the t rea tment  of  untwinned single crystals, a 
knowledge of  the possible twin laws by (pseudo-)-  
merohedry  can be crucial, as these represent  the 
alternative orientat ions of  the crystal structure with 
respect to its own lattice. 

0108-7673/87/040564-05501.50 © 1987 International Union of Crystallography 
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It is the object of this paper to present the theory 
and algorithms for the generation of possible twin 
laws by (pseudo-)merohedry. The method presented 
is applicable for arbitrary cell dimensions, for any 
orientation of the space-group symmetry with respect 
to the basis vectors and is very readily implemented 
on a computer. The classical analysis of merohedry 
[see, for example, Le Page, Donnay & Donnay 
(1984)] considers a lattice of arbitrary dimensions 
and leads to 44 oriented point groups. However, the 
twinning possibilities of a crystal, for example, in the 
monoclinic point group rn but with a metric symmetry 
in the point group m3m, cubic system, are not con- 
sidered. In the analysis given below all group- 
subgroup relations between the metric symmetry and 
the crystal point group are taken into account. In this 
paper the term merohedry applies to the classical 
situation where the crystal point symmetry and the 
lattice symmetry are in the same system, and the term 
pseudo-merohedry to the more general case of 
metrical specialization. As a referee has pointed out, 
in pseudo-merohedry, the metrically higher symmetry 
of the lattice is never exact and exists only within the 
experimental error. In fact, it even changes with tem- 
perature, pressure, impurities etc. Moreover, the 
orientation of the tensor representation surfaces 
(especially the indicatrix ellipsoid) does not follow 
the pseudosymmetry but depends on the structure. It 
is, for example, possible to observe 'metrically 
merohedral' twins in the microscope by different 
optical extinction orientations. 

One particular example of the use of possible twin- 
ning by merohedry is to be found in the very success- 
ful technique of determining absolute structure (chir- 
ality and polarity) during least-squares refinement by 
considering any non-centrosymmetric crystal as an 
inversion twin (Flack, 1983; Bernardinelli & Flack, 
1985, 1987). This example clearly illustrates a possible 
twin law's power to define orientation (in this case 
chirality or polarity) even in the absence of twinning 
[e.g. in Bernardinelli & Flack (1985) the vast majority 
of the samples proved to be untwinned single crys- 
tals]. The capability of treating real twins is an addi- 
tional asset. 

Basic theory 

Let H be the point-symmetry group of the crystal 
and G the point group of its lattice, i.e. its metric 
symmetry. H is a subgroup of G. As the relation of 
G to H is one of group to subgroup, it is natural to 
bring some of the tools of group theory to bear on 
the problem [for an excellent expos~ of this subject 
with applications to crystallography see Klee & Won- 
dratschek (1984)]. In particular, it is the technique 
of coset decomposition which is fruitful in this in- 
stance. Consider the coset decomposition of G with 
respect to H. In the following we take left cosets to 

conform to the convention of carrying out the fight 
symmetry operation first in a product. Any system of 
representatives of the decomposition is a set of sym- 
metry operations drawn from G which produces G 
from H by operating individually with each element 
of the set on all the operations in H. The operations 
in this set are precisely those which lead to the super- 
position of the lattice onto itself but which are not 
symmetry operations of H (apart from the identity 
operation). Hence any system of representatives of 
the coset decomposition of G with respect to H con- 
tains the possible (pesudo-)merohedral twin laws for 
a crystal of point symmetry H in a lattice of point 
symmetry G. The relationship between coset 
decomposition and merohedral twin laws seems not 
to have been treated in the literature to date. It should 
be noted that coset decomposition is a complete way 
of deriving the index of a subgroup (crystal point 
group) with respect to a supergroup (holohedry). The 
index gives the number of different orientation states 
of the twin domains and the number of classes of 
twin elements (including the identity). 

The left coset decomposition is unique, but the 
system of representatives is not because it can be built 
by selecting an arbitrary element from each coset. 
The same arbitrariness is present in the definition of 
twin laws, and it is customary to use twin axes rather 
than twin planes if the crystal is centrosymmetric and 
to use 180 ° rotations about twin axes as much as 
possible. For example, in this prescription the 
decompositions of point group 2/m with respect to 
point groups 2 and m lead to 2 / m = { 1 ; 2 ;  I;  m}= 
{1; 2 } + { [ ;  m} = 1{1; 2}+ /{1 ;  2} and 2/m= 
{1;2; I;  m}={1;m}+{2;i}=l{1, m}+2{1, m}. How- 
ever, in the evaluation of structure factors and 
their derivatives much benefit is to be derived from 
choosing twin laws which embody relationships 
through a centre of symmetry; i.e. where possible the 
system of representatives should contain pairs of 
operators, one of which is a pure rotation and the 
second of which is related to the first by a centre of 
symmetry._For the cases cited above one obtains 
2/m ={1; I ;  2; m} ={1; 2}+{I;  m}= 1{1; 2}+/{1;  2} 
and Z/m={1;  I-; 2; rn}={1; m}+{/ ;  2}= 1{1; m}+ 
/{1; m}. This system is also to be preferred on phys- 
ical grounds. Since the Laue symmetry is always a 
minimal supergroup of index 2 of a non-centrosym- 
metric point group within its Laue class, the inversion 
as first twin element would always produce the Laue 
symmetry, so important in diffraction and crystal 
physics. Furthermore, any merohedral twinning 
within one Laue class can always be considered as 
inversion twinning. Consequently two algorithms are 
presented: algorithm A produces a system of rep- 
resentatives according to the customary first prescrip- 
tion and algorithm B a system strongly bound to the 
centre of symmetry but nevertheless using twofold 
operations wherever possible. 
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The metric symmetry G is obtained by the process 
of cell reduction from the measured cell dimensions 
of the crystal. We have made use of the routine of 
Le Page (1982) to our entire satisfaction. Other excel- 
lent programs also exist (e.g. Zimmermann & Burzlaff, 
1985). The cell-reduction routine produces a flag 
indicating the metric symmetry and a 3 x 3 matrix 
giving the orientation of this symmetry group in its 
conventional form with respect to the declared cell. 
The operations of the seven holosymmetric Laue 
groups (~ 2/m, mmm, 4/mmm, 32/rn, 6/mmm, m3m) 
can be stored in the program and may readily be 
rotated into the orientation of the declared cell. The 
crystal point symmetry H may very simply be 
obtained from the declared space-group symmetry of 
the crystal. 

Algorithm A 

We wish here to select representatives which are 
symmetry operations of the first kind (determinant 
positive) and binary (applying an operation twice 
leads to the identity operation) as much as possible. 
This goal can be achieved by ranking the symmetry 
operations in G as follows: the identity operation 
appears first, then the binary operations of the first 
kind (twofold rotations), then the other first-kind 
operations (non-twofold rotations), then the same 
operations multipled by f giving respectively the 
inversion, the mirror reflections and finally the non- 
twofold second-kind operations. The first operation 
in H must be the identity, the remaining operations 
being in any order. 

The coset decomposition of G with respect to H 
is then performed by 'crossing out' those operations 
in G which can be generated from pre-multiplication 
of a representative selected in G with any operation 
in H except identity, which would lead to crossing 
out the selected representative. The algorithm is as 
follows: 

Flag each operation in G with a TRUE Boolean flag 
Loop, in sequence, over the operations in G: G[i] 

If G[i] is flagged TRUE, then 
Loop, starting at 2, over the operations in H: 

H[j] 
Loop, starting at i + 1, over the operations in 

G: O[k] 
If G[k]=G[i]H[j]  then flag G[k] as 

FALSE 
End of loop over G[k] 

End of loop over H[j] 
End of if G[i] flagged TRUE 

End of loop over G[i]. 

The operations in G which are still flagged TRUE 
after applying the algorithm constitute a system of 

representatives for the coset decomposition of G with 
respect to H. They are the identity operation followed 
by possible operations (or twin laws) selected essen- 
tially in the traditional way. 

Algorithm B 

G is always centrosymmetric. Let G' be the subgroup 
of index 2 of G such that G' is composed only of 
pure rotations G = G '+  (I)G' .  G' will be one of the 
point-symmetry groups 1, 2, 222, 422, 32, 622 and 
432 - the holoaxial hemihedral groups of Le Page, 
Donnay & Donnay (1984) - which should be ordered 
as for algorithm A. However, H may or may not be 
centrosymmetric: 

(1) H centrosymmetric. Each coset of G contains 
pairs of elements related by a centre of symmetry. 
We will always choose pure rotation operations to 
include in the system of representatives. We may thus 
write G = e ÷ H + f ÷ H + g + H + . . .  for the coset 
decomposition of G with respect to H with e÷, .It+, 
g÷ etc. being pure rotation operations. Let H '  be a 
subgroup of index 2 of H such that H = H'  + (I) H'. 
H'  may or may not contain only pure rotations. 
Clearly, then G = e+H'+ f÷H'+ g+H'+. • • + e_H'+ 
f_H'+ g_H' + . . . ,  where e_ = (l)e÷, f_ = (I)f÷, etc. 
The required coset decomposition of G with respect 
to H may thus be obtained from the coset decomposi- 
tion of G with respect to H'  by taking only the pure 
rotations of the system of representatives of the latter. 
This is most readily carried out by generating pairs 
of centrosymmetrically related elements of G from 
stored values of G'. 

(2) Hnon-centrosymmetric. Write H ' =  H. As G has 
pairs of operations related by a centre of symmetry, 
we have again G = e + H ' + f ÷ H ' + g ÷ H ' + .  • .+ 
e_H '+f_H '+g_H'+ . . ,  as in (1). We may perform 
the coset decomposition as in (1) but keeping both 
elements of the centrosymmetrically related pairs. 

Note that the definitions of H'  given above corre- 
spond to the way in which space group is coded in 
many crystallographic least-squares programs as (a) 
a flag to indicate the type of lattice centring, (b) a 
flag to indicate whether there is a centre of symmetry 
and (c) the remaining symmetry operations in matrix 
form. With G stored as G', H '  may be compared 
against pairs of elements generated from G', and only 
elements of G' kept in the system of representatives. 
For H centrosymmetric, this calculation gives the 
complete system of representatives whereas for H 
non-centrosymmetric only half the system is obtained, 
those outstanding being obtained from the former by 
multiplication by a centre of symmetry. The identity 
operators of G' and H'  should be first in the sequence 
of elements. The algorithm is as follows: 
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Flag each operation of G' with a TRUE Boolean flag. 
Loop, in sequence, over the operations in G', G'[i] 

If G'[i] is flagged TRUE, then 
Loop, starting at 2, over the operations in H',  

n ' [ j ]  
Loop, starting at i+  1, over the operations in 

c,', G'[k] 
If G'[k] is flagged TRUE then 

If G'[ k] = + G'[ i]H'[j] then flag G'[ k] as 
FALSE 

End of if G'[k] is flagged TRUE 
End of loop over G'[k] 

End of loop over H'[j] 
End of if G'[i] is flagged TRUE 

End of loop over the G'[i]. 

At the end of this procedure, the elements of G' 
flagged TRUE will represent the possible twin laws 
of the (pseudo-)merohedry. Should the space group 
of the crystal be non-centrosymmetric, each element 
of G' flagged TRUE should be understood to rep- 
resent two twinning operations - the element of G' 
itself and the element multiplied by 

It is possible to make use of group-subgroup rela- 
tions to economize space in storing the symmetry 
operations of the holoaxial hemihedral point groups, 
ordered as for algorithm A. For 1, 2, 222, 422 and 
432 one stores the operations of 432 in the following 
sequence of the operations given in International 
Tables for Crystallography (1983) for space group 
P432: 1, 3, 2, 4, 13, 14, 18, 19, 22, 24, 16, 15, 5, 6, 7, 
8, 9, 10, 11, 12, 17, 20, 21, 23. In the order of the 
stored elements one finds the operations of: 432, 1 to 
24; 422, 1 to 6 and 11 to 12; 222, 1 to 4; 2, 1 to 2; 1, 
1. Likewise for 32 and 622 one stores the operations 
of 622 given for P622 in the order: 1, 7, 8, 9, 4, 10, 
11, 12, 2, 3, 5, 6. 622 is found in elements 1 to 12; 32 
in 1 t o 4 a n d 9 t o  10. 

Examples 

In the following, the symmetry operations for the 
point groups are taken from the Space Group section 
of International Tables for Crystallography (1983). 
The full symbol for a symmetry operation is only 
given where confusion might arise. The sequence of 
the symmetry operations as given in International 
Tables for Crystallography (1983) needs changing for 
the use of algorithm A. For algorithm B, only the first 
half of all the symmetry operations need be used for 
centrosymmetric point groups. 

a-quartz crystallizes in the trigonal system with 
non-centrosymmetric space group P3121 and cell 
dimensions a = 4.913 and c = 5.404 A. The crystal 
point group is thus 321={1; 2 x, x, 0; 2 x, 0, 0; 
2 0, y, 0; 3+; 3-} and the metric symmetry is 6 /mmm = 
{1; 2 x, x, 0; 2 x, 0,0; 2 0, y, 0; 2 0,0,z; 2 x, ~,0; 
2 x, 2x, 0; 2 2x, x, 0; 3+; 3-; 6+; 6-; I ;  m x,~,z;  
m x ,  2x, z; m 2x, x, z; rn x, y, O; m x, x, z; m x, O, z; 

m 0, y, z; 3+; 3-; 6+; 6-} with the group arranged in 
the sequence ready for use by algorithm A. The coset 
decomposition is thus 6/mrnm = {1; 2 x, x, 0; 2 x, 0, 0; 
2 0, y, 0; 3+; 3-}+{2 0,0, z; 2 x,~,0; 2 x, 2x, 0; 
2 2x, x. 0; 6+; 6 -}+{i ;  mx,  R z; mx,  2x, z; rn 2x, x, z; 
3+; 3-}+{mx,  y,O; mx,  x,z;  mx,  O,z; mO, y,z;  6+; 
6-} Applying_ either algorithm A or B one obtains 
{1; 2 0, 0, z; I ;  m x, y, 0} for the system of represen- 
tatives. The last three representatives correspond 
respectively to the twin laws for the well known 
Dauphin~, Brazil and combined twinning___The twin- 
related reflections are hence hkl, hkl, hkl, h k i  in 
agreement with Le Page, Donnay & Donnay (1984). 

Nb3Si and Nb3As crystallize in the tetragonal Ti3P 
structure type with space group P42/n with cell 
dimensions a=10.224(1),  c = 5 . 1 8 9 A  (for Nb3Si). 
The crystal point group is thus 4/m = {1; 2 0, 0, z; 4+; 
4-; f; m x, y, 0; 4÷; 4-} and the metric symmetry is 
4 /mmm={1;  2 0,0, z; 2 0, y, 0; 2 x, 0,0; 2 x,x,O; 
2 x,~,0; 4+; 4-; [; m x,y,O; m x,O,z; m O,y,z; 
m x,~,z;  m x,x,z ;  3,+; 4-}. Clearly the coset 
decomposition of 4 /mmm with respect to 4/m is 
given by 4 /mmm = {1; 2 0, 0, z; 4+; 4-; i ;  m x, y, 0; 
4+; 3~-}+{2 0, y, 0; 2 x, 0,0; 2 x,x,O; 2 x,~,0; 
m x, 0, z; m 0, y,z; m x,~,z;  m x,x,z}. Either 
algorithm A or B would lead to 4 / m m m =  
1{4/m} + (2 0, y, 0){4/m} and hence the system of rep- 
resentatives is {1, 2 0, y, 0}. The twin-related reflec- 
tions are hence hkl and hkl in agreement with Le 
Page, Donnay & Donnay (1984). 

As an example of pseudo-merohedry consider a 
structure in the space group R3m (on rhombohedral 
axes) but with cubic (m3m) metric symmetry. The 
system of representatives chosen by algorithm B 
(algorithm A would give the same result) is: {1; 2 
0, y, 0; 2 0, 0, z; 2 x, 0, 0}. The twin-related reflections 
are hkl, hkl, hkl and hkl. 

Point group m (details in Basic theory section) 
provides an example of different systems of rep- 
resentatives being produced by algorithms A and B. 
A produces {1,2} with twin-related reflections hkl 
and hkl and B_gives {1, I} with twin-related reflec- 
tions hkl and hkl. 

Concluding remarks 

The calculation described above (algorithm B) has 
been implemented into our version of X R A Y 7 6  
(Stewart, Machin, Dickinson, Ammon, Heck & Flack, 
1976) using a slight adaptation of the cell reduction 
routine of Le Page (1982). Tests have been performed 
on the 32 crystal point groups and concur with Le 
Page, Donnay & Donnay (1984). A few tests of 
pseudo-merohedry (e.g. point group m in a cell of 
cubic symmetry) have also been undertaken. 

For an effective implementation of a treatment of 
possible merohedral twinning in a crystallographic 
package of programs two ingredients are necessary. 
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Firstly it must be possible from the ordinary data 
available at the structure refinement stage (viz cell 
dimensions and space group) to generate the possible 
twinning operations due to (pseudo-)merohedry. One 
of the algorithms described in this paper can be used 
for this purpose. The second ingredient is the capabil- 
ity to refine the volume fractions of the twin com- 
ponents as variables in the least squares. In principle 
this poses no major difficulties although attention 
should be paid to such questions as scale-factor 
refinement, intensity-data structuring,, evaluation of 
Fourier coefficients for electron density calculation 
and rotation and/or inversion of atomic parameters. 
These questions will be examined in detail in a future 
publication. The treatment of twinning resolves not 
only the problem of twinned crystals butalso solves 
the difficulties of orientation ambiguities when work- 
ing from a known list of atomic positional parameters. 
As an illustration, in the refinements of Nb3Si and 
Nb3As undertaken by Waterstrat, Yvon, Flack & 
Parth6 (1975) from published atomic parameters (see 
second example above), one compound refined 
immediately to a low R value whilst the second 
remained at 50%. When the reflection indices were 
transformed by the above twin law, the R value of 
the second compound diminished immediately to a 
low value. An automatic twin-component refinement 
would have saved some considerable anxiety and 
immediately resolved this orientation ambiguity. 

The problems of twinning and space-group 
ambiguities with disorder are intimately related. The 
coset decomposition of the metric symmetry with 

respect to the crystal point group furnishes the rota- 
tion matrices necessary to describe the merohedral 
twin laws. It is of course possible in practice that, 
instead of twinning, disorder could arise and that the 
declared space group is a subgroup of the correct 
one. The coset decomposition produces the rotational 
components of the 'missing' symmetry operations. It 
would remain to find the translational parts by some 
other technique. 

The author wishes to thank Dr Y. Le Page and Dr 
W. Depmeier for very helpful criticism on a first draft 
of this paper. 
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Abstract 

[0k0] n-beam diffraction patterns of germanium have 
been recorded by rotation of specimens about the 
diffraction vectors of the vanishingly weak 020 and 
060, and the very strong 040 reflections. N-beam 
interactions were displayed clearly in the [020] and 
[060] scans, and somewhat less clearly in the [040] 
scan. Unambiguous phase indications, however, were 
detected only in the [040] scan. The experiments 

* Work supported by the Division of Materials Research of the 
National Science Foundation, Grant DMR 8311525, and in part 
by the Joint Services Electronics Program, Contract no. F49620-82- 
C-0084. 

demonstrate that the visibility of n-beam interactions 
does not necessarily imply a corresponding visibility 
of experimental phase indications. The geometry of 
some unusual four- and five-beam interactions 
detected in the [0k0] scans, and the phases shown 
by those interactions, are also discussed. 

I. Introduction 

The visibility of n-beam interactions in Renninger 
patterns increases monotonically with decreasing 
two-beam background intensity, i.e. with decreasing 
intensity of the primary reflection. It is therefore often 
assumed that only weak primary reflections are suited 
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